1998 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM

TIME SYNCHRONIZATION OVER THE INTERNET
USING “AUTOLOCK”

Judah Levine
JILA and Time and Frequency Division
National Institute of Standards and Technology

University of Colorado
Boulder, Colorado 80303

Abstract

This paper describes the operation of an algorithm for
synchronizing the time of computers using messages
transmitted over packet-switched networks such as the
Internet. The algorithm configures itself to realize any
specified performance level at minimum cost (measured in
computer cycles or network bandwidth). If the highest-
possible accuracy is requested, the performance will be
limited by the larger of the instability of the local clock
oscillator or the noise in the measurement process
between the client and the server. Lower accuracy can be
realized at substantially lower cost. The algorithm uses a
frequency-locked loop with unequal spacing between the
calibration messages. It makes better use of scarce
network bandwidth than previous methods. In addition,
the algorithm is an improvement over the pure-FLL
“Interlock” algorithm that I described previously because
it is self-configuring. In addition to supporting an explicit
trade-off between cost and accuracy, the algorithm
provides better performance than previous methods
because it is better able to adapt itself to fluctuations in the
asymmetry of the network delay. This robustness can be
realized without the preliminary tuning that was necessary
to realize optimum performance using previous methods.

Introduction

This paper discusses a method for synchronizing the
clock of a client computer using messages transmitted
over the Internet from a remote server. The design
principles would also be appropriate for other types of
connections between the client and the server, provided
only that the delay through the network connecting them
is symmetrical on the average.

A number of other algorithms for synchronizing
clocks in this environment have been published [1]-[5].

U.S. Government work not protected by U.S. copyright 241

Each of these uses a different metric for evaluating the
performance of the algorithm and for deciding what is
meant by “optimum” operation. Some algorithms, for
example, are designed to guarantee an upper bound on the
absolute value of the time error of the client [3]{4]. To
realize this objective, they must make relatively frequent
requests to servers that are close by (in a network delay
sense), since the error due to an asymmetry in the network
delay is bounded by one-half of the round-trip value.
Supporting this density of servers may be quite expensive
in practice, especially as the Internet becomes more
crowded so that the average delay between any two points
increases. Others algorithms place very strong emphasis
on dealing with unreliable servers or with frequent large
fluctuations in the network delay or in its asymmetry [2].
They realize these objectives by querying a number of
servers on each calibration cycle, and by then choosing
the “winner” based on various criteria.

All algorithms with these kinds of goals are relatively
expensive from the point of view of the number of servers
that they require to realize their design goals. The reason
is that the average operating cost (measured in terms of
the number of calibration requests that are generated by a
client) is driven by the desire to limit the maximum time
error or to detect server failures, which should be
relatively rare events. While this machinery undoubtedly
improves the worst-case performance of a system
synchronized in these ways, it may have little impact on
the RMS time accuracy of a typical client.

Our previous Internet-based algorithm [2] and the
method that we describe here use the RMS accuracy of the
clock in the client as the measure of performance, and
they are designed to maximize the ratio of this RMS
accuracy to the average cost (measured in terms of the
load on the servers and the network). This optimization
can be implemented either by finding the best
performance that can be achieved at a fixed cost or by
minimizing the cost for a given level of performance. As
I will show below, the relationship between cost and
performance is not linear — incremental improvements in

performance become increasingly expensive to achieve.
Some levels of performance may not be achievable at any
cost in the given environment because the frequency of
the local clock is too unstable to support the amount of
averaging that is required to cope with a noisy
communications channel.

Synchronizing the local clock

All synchronization algorithms start from the same
basic data: the measured time difference between the local
machine and the distant server, and the network portion of
the round-trip delay between the two systems. (Delays in
the distant server are usually not a problem. Either they
are small enough to be ignored or they are measured by
the server and removed by the client.) These data are
processed to develop a correction to the reading of the
local clock. The usual approach is to use the measured
time-difference after it has been corrected by subtracting
one-half of the round trip delay. This model is based on
the assumption that the transmission delay through the
network is symmetrical, so that the one-way delay is one-
half of the measured round-trip value. This corrected
value may be used to discipline the local clock directly or
it may be combined with similar data from other servers to
detect outliers or to compute a weighted average time-
difference which is then used to steer the local clock.

These steering corrections generally take two forms:
time steps, which adjust the local clock by a fixed amount
essentially instantaneously, and frequency steps, which
adjust the effective frequency of the local clock oscillator
and thereby slew the time relatively slowly. Frequency
steps are usually realized by adjusting the size of the
software “tick” — the amount added to the clock register in
response to periodic interrupts from the physical clock
oscillator. The frequency of the hardware oscillator itself
is usually not accessible to software control.

Time steps, especially those that move the clock
backwards in time, can cause unwanted side effects in
other programs, and their use is usually limited to setting
the clock during an initial start-up of the system.
Frequency steps are the preferred means of adjustment,
although they can have problems too. The minimum
frequency adjustment that can be applied simply is to
change the size of the tick by one least count. The
resulting change in frequency is one least count per
hardware interrupt, which is a fractional change of about
10 for most systems. This value is much too large. The
actual frequency offset is likely to be one-tenth of this
value or less, and the precision with which this offset can
be determined is even greater.

Frequency steering generally requires a resolution of
at least 5x107® if the granularity of steering corrections is
to not degrade the frequency stability of the clock
oscillator [1, fig. 1]. This level of frequency adjustment is
usually implemented in two ways: either the kernel is
modified to allow static frequency adjustments that are

~ smaller than one least count per hardware interrupt to be

specified, or the larger “standard” frequency offset is
used periodically, with the ratio of the “on” interval to the
“off” interval determined so that the average frequency
offset corresponds to the estimate derived from the time-
difference measurements. The first method has the
advantage that the resulting time adjustment is smoother,
but it requires access to the kernel source code. The
second method is more general and can be applied to
almost any system, but it results in a sawtooth-like
variation in the time of the local clock with respect to the
distant server. The amplitude of this sawtooth is a
function of the system design, but it can be as large as a
full tick (i.e., on the order of milliseconds) in some
implementations. The first method is the best choice if it
can be implemented in the client configuration, and it is
the method that we use to keep our servers on time.

The maximum frequency offset that is required is
usually on the order of s/day, which is a fractional
frequency offset of about 5x10°. The dynamic range
required in the frequency steering loop is thus about
1000:1. This requirement is usually not a problem, and
almost any method that can provide the required
resolution can also satisfy the dynamic-range requirement
in steady-state operation. The maximum fractional
frequency offset that’is supported by the standard kernel
of most systems is about 4x107, so that it is not practical
to remove time offsets of more than a second or so using
this method because it would take too long. The clock is
usually set initially using a single time-step for this reason.

Effects of measurement noise

Individual time-differences have a substantial
uncertainty because of the noise in the measurement
process itself. This noise arises from many sources — from
fluctuations in the response time of the local operating
system to interrupts, from jitter in the delay through the
network or the interface hardware and from other
hardware-related causes. Whatever the cause, this noise is
not associated with the frequency of the clock oscillator.
Using the time-differences themselves to set the local
clock directly is therefore not a great idea -- no matter
how the adjustment is performed. Doing this would
convert the phase noise of the measurement process into
frequency noise in the clock. The only reason for doing

242

this might be simplicity. A procedure that simply set the
clock to the time received from the server would be
simple to implement and would not have to run
continuously as a background or “daemon” process. The
price for this simplicity is that the performance of the
local clock oscillator is degraded.

The contributions to the noise in the measurement
process vary very rapidly with time, and consecutive
measurements where the interval between them is large
compared to the characteristic period of these fluctuations
will be affected by noise that is almost completely
uncorrelated both with the value on the previous
measurement and with the underlying frequency of the
clock oscillator. The spectrum of these variations is
therefore approximately white, and averaging closely-
spaced time-interval measurements results in an estimate
that converges to the underlying mean value of the time
difference, provided only that the measurements are made
quickly enough so that the parameters of the oscillator
have not changed.

It is usually easy to satisfy both of these time
requirements. The characteristic period of the hardware is
on the order of microseconds or less, so that even
measurements made a few seconds apart are affected by
very different noise environments. -On the other hand, the
time dispersion due to the fluctuations in the frequency of
the oscillator is usually negligible on this time scale.

However, the averaging process cannot be continued
indefinitely. It will only do the “right” thing as long as
the spectrum of the fluctuations in the data can be
characterized as predominantly white phase noise. The
range of averaging times over which this is true is usually
pretty small for typical computer clocks, and the non-
stationary statistics of the delay in a typical Internet path
further restricts the averaging times over which this is an
appropriate strategy. The result is that algorithms that
develop a correction based on the average measured time-
difference are likely to be useful only in local-area
networks and with a relatively short interval between
calibration cycles (on the order of 1000 s or less).

It is not always easy to detect the effects of too much
averaging, that is averaging for a time interval that
exceeds the domain in which the noise is dominated by
white phase noise. The average time difference still exists
in this domain, but it is no longer a stationary quantity.
The synchronization loop appears to be operating
normally, but it is fact increasingly dominated by flicker
(and, at sufficiently long averaging times by random-
walk) processes [1, fig. 9].

Algorithms that stabilize the frequency of the local
clock (as opposed to its time) have an easier job in
principle. These algorithms can operate at much longer
averaging times where white phase noise is no longer the

243

main problem, and the performance is limited by the
frequency stability of the local clock. It turns out that
clock oscillators in many computer workstations are
surprisingly good. Many of them have Allan deviations of
less than 107 at averaging times of 10* s, so that they have
a free-running time stability of better than 1 ms RMS [1,
figs. 1 and 3]. One way of realizing this stability is to
average the individual time-differences for a time that is
well within the domain where white phase noise
dominates the noise spectrum, and to then switch to
averaging the frequency (that is, the first difference of
these time differences) as long as the noise process can
still be characterized by white frequency noise. For the
oscillators typically found in computer hardware, this
extends the averaging interval to about 15 000 s. The
details of the design will depend on the stability of the
local oscillator and on the noise in the network link to the
server. However, a design configured for the highest-
possible accuracy would involve averaging time
difference measurements over a period of a few seconds
combined with averaging the frequency for a period of a
few hours. This strategy is not equivalent to using the
same number of measurements that are equally spaced in
time, even though the average load on the servers would
be the same in both cases [2].

Frequency-locked loops are not better or more
accurate than those based on phase-lock techniques -- they
are advantageous because they are almost always cheaper
to operate for essentially the same performance. This is
true because the high level of measurement noise over the
Internet means that the local clock is usually more stable
at short times than the distant server seen through the
noisy Internet. A frequency-locked loop can better exploit
this stability by longer averaging, and therefore can be
configured with longer intervals between the calibration
cycles than the corresponding phase lock. Although
neither design is a priori more sensitive to glitches, the
longer interval between calibration cycles in a frequency
loop and its correspondingly longer time constants, means
that a glitch is likely to persist for a longer time in that
design before it is detected and removed.

Details of the method

The algorithm design is based on the principle of
separation of variance -- that is that it is possible to
separate the contributions of the clock and the
measurement process using statistical techniques. A
second implicit assumption is that the variances of both
the measurement process and the clock frequency can be
modeled using stochastic parameters. These turn out to be
good approximations to the performance of real hardware

over a wide range of operating parameters, although the
second assumption tends to break down at averaging times
approaching one day (see below). In order to achieve this
separation, the program evaluates the following two
statistics after each calibration cycle has been completed:

S-1. The standard deviation of a group of closely
spaced time-difference measurements that are
made quickly enough so that the parameters of
the local clock have not changed significantly
while they are being made. As we discussed
above, this requirement is easily satisfied if the
ensemble of measurements is completed within a
few seconds.

S-2. The error in predicting the currently
observed average time-difference using the
previously measured value and the estimated
frequency offset. This prediction is done using a
simple linear relationship:

55:‘ =X +yi—]7’—’ (D

where x; is the time-difference measured at time
t, y; is the frequency difference between the local
clock and the server estimated at the same time
and 7 is the time interval from t., to t. We use
equation (1) to predict the time difference; the
error in this prediction is the difference between
the measurement and the prediction. It is given

by
& =x, - % 2)

Both statistics are maintained in two versions: the value
determined in the current calibration cycle, and a sliding
average over the most recent 12 hours or 3 calibration
cycles, whichever is longer.

The first statistic is sensitive primarily to the phase
noise in the measurement process. The program first
compares the average value of this parameter with the
desired level of performance that was specified by the
operator when the software was installed. The number of
measurements in each group is adjusted once per day until
the two are roughly equal -- the size of the group is
increased if the RMS of the mean is larger than the
requested accuracy and decreased if the mean is much
better than necessary. If we assume that the measurement
noise is approximately white phase noise, the RMS value
of the mean of a group of measurements varies as the
square root of the size of the group. The specified
performance level therefore has a quadratic effect on the
cost of the algorithm. In the limit, it may not be possible

to achieve the desired level of performance with a
reasonably sized group (less than 25 or 50 members). The
program defaults to a specified maximum group size in
this case. Likewise, the program will never decrease the
size of a group below a defined minimum size (usually 3)
no matter how small the RMS becomes.

The RMS of the group of time differences sets an
upper bound to the RMS performance of the
synchronization loop at longer averaging times. No
matter how stable its frequency is, on the average the local
clock cannot be set more accurately than this RMS
dispersion. This RMS value may be as small as 75 - 100
us when the server and the client are on the same network,
but is more typically on the order of milliseconds for a
continental-length path.

If the standard deviation of the current group of time
differences is much larger than the average, the most
likely reason is that it is due to jitter in the symmetry of
the network delay during the time that the group of
measurements was being made. Although the
measurements are made rapidly enough that the
parameters of the local and remote clocks have not
changed, the same cannot be said of the network (The
magnitude of the delay is not a problem, since it is
measured on each cycle -- only its asymmetry causes
trouble.) The algorithm will drop a single member of the
group as an outlier if doing so will reduce the standard
deviation to a more reasonable value, and will try to
repeat the entire group if dropping a single value will not
fix the problem. The assumption that underlies this
procedure is that asymmetries in the network delay are
transient effects. Small asymmetries will be averaged by
multiple measurements, while large ones will be short-
lived and detected as outliers.

This method will fail if the path from the client to the
server has a static asymmetry. which will bias the results
but will not contribute to the variance of the group of
measurements. The offset due to this asymmetry is
bounded by one-half of the round-trip delay, so that at the
instant of synchronization, the time difference between the
client and the server is guaranteed to be less than the sum
of the measured time difference and one-half of the round-
trip delay. This may be good enough for some purposes.
but, as we will show below, this guarantee becomes
weaker with time because of stochastic frequency
variations in the clock oscillator.

It is sometimes possible to detect a static asymmetry
by requesting timing data from a second server, but the
two data sets are likely to disagree consistently in this
case, and it may not be possible to decide where the
problem lies. In particular, if the local clock is
synchronized initially to a server via a path that has a
static asymmetry, then data from a second server received

244

via a more symmetric path may be rejected as coming
from a machine that is thought to be broken.

Under normal, steady-state operating conditions, the
magnitude of the second statistic is sensitive primarily to
the frequency stability of the local clock, and its average
value is proportional to the value of the Allan deviation
for an averaging time equal to the time interval between
calibration cycles. This magnitude is affected by two
parameters -- the time interval between calibrations and
the time constant of the frequency update loop [1, eq. 3].

The time constant of the frequency update loop
represents the optimum averaging time for the frequency
estimates. Averaging for a shorter time interval does not
optimally attenuate the white frequency noise of the
oscillator. Averaging for a longer time results in an
average which exists in a formal sense but is no longer
stationary because the procedure has entered the flicker
and random-walk portions of the spectrum. This time
constant is primarily a function of the design of the
oscillator, and it needs to be determined only once when
the algorithm is started for the first time. It is measured as
part of the cold-start portion of the algorithm by
evaluating the Allan deviation as a function of lag when
the local clock is free running. This parameter is usually
on the order of 10 000 s — 20 000 s, so that this initial
evaluation process to determine it usually takes somewhat
less than 1 day. (In order to have confidence in the Allan
deviation estimates, it is usual to compute the deviation
using a time series that is at least 3 times longer than the
longest lag that is of interest.)

Once the algorithm is running in steady state, the
average value of the second statistic and the desired
performance level are used to adjust the interval between
calibration cycles. If the average prediction error is much
larger than the measurement noise (i. e., S-2 >> S-1) then
the prediction error is due to stochastic frequency
fluctuations in the local oscillator. If the prediction error
is larger than the desired level of performance, then the
time between calibration cycles is too long -- the
frequency stability of the oscillator is not good enough to
support free running for that time interval and more
frequent calibrations are necessary. If the prediction error
is not larger than the desired level of performance, then
there is no need to have more frequent calibrations (even
though the performance would be improved by doing so).

If the prediction error is much smaller than the
measurement noise, then the calibration interval is
unambiguously too small -- the frequency stability of the
oscillator would support the same level of stability with
less frequent calibrations and the extra ones are essentially
being wasted. The interval between calibrations can be
increased in this case with minimal impact on the
performance of the loop. The only reason for not doing so

245

would be a concern about outlier detection, and the user
can specify an absolute maximum interval between
calibrations if this is a concern.

The relationship between the performance of the loop
and the interval between calibrations can be calculated if
the noise type is known. This relationship tends to make
predictions that are too optimistic when the averaging
time exceeds a few hours — the performance tends to
degrade faster than predicted as the time between
calibration cycles is increased in that domain. There are
two reasons for this. The first is that when the interval
between calibration cycles becomes longer than the time
constant of the frequency update loop, then that time
constant is effectively forced to have a value that is larger
than optimum. In other words, the distribution of the
prediction errors calculated using eq. 2 above become
increasingly dominated by flicker and random-walk
processes and these errors are effectively fed back into the
synchronization loop. The second reason is that at longer
periods the frequency of the oscillator begins to be driven
by non-stochastic effects such as fluctuations in the
ambient temperature. These fluctuations are in addition to
the increase in the stochastic level of the frequency
variations. Temperature fluctuations in a typical office
environment may pull the frequency of the oscillator by
up to 1 ppm with a period ranging from several hours to 1
day. Those frequency variations are larger than what
would be predicted based on a smooth extrapolation of the
Allan deviation from its value at shorter periods.

Parameter update

If the statistical comparisons indicate that the current
time differences are consistent with the past performance,
then the current data are used to update the parameters of
the procedure. These include the average values of both
statistics and the average frequency of the oscillator. This
average frequency is used to steer the local clock using
one of the methods described above — either it is
transmitted directly to the kernel or it is used to schedule
small periodic time adjustments which realize the
computed offset frequency on the average. The details of
these adjustment procedures are more fully discussed in

[1].

Error detection

A comparison of the values for each of the two
statistics found on the current cycle with the
corresponding average values can be used to detect many
kinds of problems. We have already discussed this point

above with regard to the standard deviation of the group
of time-difference measurements, which can be used to
detect jitter in the symmetry of the network delay.
Likewise, this standard deviation is a measure of how well
closely spaced time-differences received from two
different servers should be expected to agree.

If the tests based on the first statistic are okay, but the
prediction error on this cycle is much larger than the value
expected based on the average of this parameter, the
software attempts to determine the cause of this apparent
change in performance. (This test is significant only if the
algorithm is operating in steady-state. If, based on the
procedures outlined above, the interval between
calibrations has just been increased, then an increase in
the prediction error is to be expected, and a comparison
with the average value is not appropriate until the average
value comes to equilibrium at this increased time interval.)
The software conducts a number of tests in the following
order:

1. The simplest possibility is that the change is due to
a temporary change in the symmetry of the network delay
(because of congestion, for example). The program
repeats the entire measurement protocol several times to
see if the prediction error is improved on subsequent
attempts. These repeated measurements are made to the
same server. This procedure removes the discrepancy
about 60% of the time after a single retry and about 80%
of the time after a second one.

2. If the error persists, the program queries an
alternate server and uses majority voting to decide if the

_problem is in the first server or in the local clock. (A
network problem that is common to both servers will be
considered -- incorrectly -- as a problem in the local
clock). Note that the time of the local clock contributes to
this comparison based on its expected stability as
estimated by its Allan deviation. If the two servers agree
(to within the phase noise of the measurement process as
estimated by S-1), then the local clock has experienced a
change in its characteristics. ~The response to this
conclusion is outlined below. If the data from the second
server indicate that the first server is broken (or its path
delay is significantly asymmetric), then the two
interchange roles, and the alternate server becomes the
primary one for the next 24 hours. The program tries to
switch back to the first server at that point, and does so if
its data satisfy the tests described above.

3. If the problem cannot be resolved in step 2 (i.e., if
the time-differences between both servers are not
consistent with the expected prediction error and if the
data from the two servers are not mutually consistent
either) then either the problem cannot be assigned to one
cause or our expectations based on the previous average
performance are too optimistic. The operating parameters

are not modified and the program waits a short time and
tries again. This can happen if the network is very
congested or if the path to one or both of the servers has a
significant static asymmetry. The program will use a third
server in an analogous manner if one is defined. If only
two servers are specified (of if data from a third server
fails to resolve the question), the program increases the
average variances and goes into “holdover” mode. The
holdover performance preserves the last estimate of the
frequency offset of the local clock and continues to steer it
in frequency based on that estimate. It makes no changes
to its time. The clock accuracy will be limited by the
flicker and random-walk frequency fluctuations of its
oscillator. The time dispersion due to these fluctuations
depends on the quality of the oscillator; typical values for
the Allan deviation of the frequency are on the order of
10 at 1 day, which would result in a time dispersion of
50- - 100 ms. If the problem is due to a transient
degradation of the network, then it will probably
disappear on the next cycle; if it is due to a more
permanent degradation of its characteristics then the
synchronization procedure will slowly learn this by
repeated increases in the average variances which form
the basis for all of the tests that we have described.

The threshold for deciding that the current estimate of
a statistic is “much larger” than the average value is set
based on the usual compromise between the need to
maintain adequate sensitivity to problems while not being
overly sensitive to the statistical fluctuations in the
amplitude of the noise. We have used a threshold of three
times the standard deviation in all of our experiments. If
the underlying statistics of the processes were Gaussian, a
threshold of three times the standard deviation should
cause the measurements to trigger these error tests about
1% of the time in normal operation. In fact, the data are
not Gaussian, and the tests are triggered in about 10% of
the calibration cycles. These “outliers” are often quite
large so that the algorithm is not sensitive to the exact
value used for the threshold.

Error modeling

The most common cause of an error in older systems
was a time-step caused by a lost interrupt. These were
easy to detect because the prediction error was very close
to an integral number of systems ticks. This problem is
usually not important in newer systems, where a large
prediction error is usually due to a significant secular
change in the frequency of the clock oscillator. As we
pointed out above, the usual cause of this frequency drift
is a change in the ambient temperature, although a change
in line voltage may also contribute to a lesser extent. The

246

relationship between ambient temperature and oscillator
frequency is complicated, because it depends both on the
temperature and on its spatial gradient. Attempting to
correct the oscillator frequency based on temperature
measurements is too complex for most installations and is
not a very profitable strategy in any case. The best
strategy is to limit both the time constant for the frequency
update loop and the maximum interval between
calibration cycles so that these temperature-induced
frequency variations are modeled as deterministic effects
by the frequency estimator and removed. In other words,
the parameters of the loop must be short enough so that
these temperature-induced effects are treated as real
frequency changes, rather than as stochastic effects that
should be averaged without appreciably changing the loop
parameters.

Synchronization experiment

In order to test these ideas, we conducted two
synchronization experiments. The first was designed to
synchronize the local clock as accurately as possible and
to find out what accuracy could be achieved and how
expensive it would be to realize it. The second
experiment was designed to synchronize the same clock
so that it was correct only to the nearest second using the
same servers and network path as in the first experiment.
The goal was to see how much this relaxation in accuracy
would save in the operating costs.

In both experiments we synchronized the clock of a
computer which was located in Boulder, Colorado to a
server on the West Coast in Redmond, Washington and
one on the East Coast in Gaithersburg, Maryland. The
time of the local clock was also measured using
diagnostics derived from other systems in Boulder, but
these diagnostics were not used to discipline the clock.
The server in Redmond was the primary one; the one on
the East Coast was only used as part of the error
evaluation procedure as outlined above.

The details of the paths between our client in Boulder
and our two servers were not under our control. Although
the path to Gaithersburg, Maryland had a delay that was
always very nearly symmetrical, the path from Boulder to
Redmond was often 42 ms longer than the return path
(because it was routed through Atlanta, Georgia). When
this was true, the two servers seemed to have a time offset
of 21 ms — an offset that was large compared to the time
dispersion due to all other causes for averaging times up
to several hours. As we mentioned above, static
asymmetries of this type sometimes be
unambiguously removed by any statistical procedure. Our
solution was to add a third server located in Reston,

cannot

247

Virginia, and to use its data in a simple extension of the
majority-voting algorithm described above. The result
was to exclude the server in Redmond whenever its delay
became asymmetric and to make the server in
Gaithersburg the primary one with the server in Reston as
its backup when needed. Even when three servers are
specified in the configuration file, only one is actually
used most of the time — the others are used only to resolve
ambiguities when a large prediction error indicates a
possible problem or a change in the parameters of the
system.

0.1

seconds

10 20 30

Days from 24 Mar. 1998

Fig. 1. The time difference in seconds between the local
clock and UTC.

40000
30000

é
g 20000
10000
0

Days from 24 March 1998

Fig. 2. The interval between calibration cycles as a
function of epoch for the first experiment.

Fig. 1 shows the measured time difference between
the local clock and UTC for the first experiment, and fig.
2 shows the interval between calibration cycles for the
same period. Note that the interval between calibrations is
gradually increased during the first week of operation
without significantly affecting the accuracy of the clock.

This situation changes abruptly when the interval reaches
32 000 s — an interval comparable to the length of the
working day -- because both the local temperature and the
network delay have deterministic fluctuations near this
period. Although it does not happen immediately, one of
these fluctuations eventually exceeds the threshold and the
algorithm is forced to decrease the time between
calibration cycles to maintain the desired performance
level The same story is repeated on a smaller scale
several more times until about day 28 — a day which had
both a large change in temperature followed by the failure
of a network element when the same kind of problem is
repeated. The RMS accuracy of the entire data set is
about 30 ms, but most of this is due to the two large
events — the RMS of the data excluding these events is
about 10 ms.

0.006 T % T E T ; T
_§ - —}
§ 0.003 — —
0
0 10 40

Days from 24 March 1998

Fig. 3. The RMS spread of a group of five time
difference measurements made over a very short time
interval.

The large fluctuations shown in fig. 1 are primarily
due to large and slowly varying network asymmetries or
glitches in the local clock itself. As shown in fig.3, they
are not due to more rapid jitter in the network asymmetry
because they are not visible in the RMS spread of
consecutive measurements (S-1). Based on fig. 3, the
synchronization loop should have been able to
synchronize the time of the clock with an uncertainty of 1-
2 ms RMS; the actual loop achieved this on occasion, but
the overall performance (even excluding the glitches) was
not that good. The reason is that the interval between
calibrations was allowed to grow to values larger than the
optimum time constant for the frequency averaging loop.
The best performance would have been realized if we had
clamped the interval between calibrations to a value less
than 12 000 s — the measured optimal time constant for the

248

frequency loop. Note that the interval between
calibrations was almost always larger than this value.

Fig. 4 shows the average frequency offset of the clock
as estimated by the algorithm. Diurnal effects are visible
on occasion, but they are smaller than the random-walk
frequency noise, which dominates the noise spectrum at
this period. These frequency fluctuations have an
amplitude of about 3x10 peak to peak with an irregular
period of about 1 week, and they can be used to suggest
an initial configuration for a synchronization loop
designed to keep the clock on the machine accurate only
to the nearest second.

12—
2 1
j="
& -
=y
o
I 10 —

9 | I | i | | |
0 10 20 30 40

Days from 24 March 1998

Fig. 4. The frequency offset of the local clock as
estimated by the algorithm. The diurnal temperature-
induced effects are masked by the random-walk frequency
fluctuations.

If a static offset of about 10.5x10° were applied to
the clock oscillator of this system and if the machine was
then left free-running with no other updates, then the
time-dispersion over the one-month period shown in fig. 4
would have been somewhat less than 1 s RMS. This result
emphasizes the fact that keeping the clock correct to the
nearest second requires very little external information —
although the clock in the system we were using would
gain almost 1 s/day if it were run with no correction at all,
this frequency offset is very stable and can be predicted
with considerable accuracy. In practice, the interval
between calibration cycles would be set more by our
concern that we detect a glitch relatively promptly than by
the need to adjust the steering of the clock when it is
operating normally.

We tested these ideas by configuring the algorithm to
achieve an accuracy of 1 s RMS, using the same servers as
in the previous experiment. We set the initial interval
between calibration cycles to 32 000 s, and we specified
that the interval should not exceed 200 000 s. The time
constant for the frequency update loop was left at 12 000

s; since the minimum interval was larger than this value,
the effective time constant was three sample times as
discussed above.

It took just over 10 days for the interval between
calibrations to reach the maximum specified value. The
RMS time difference increases with the interval between
calibrations, but has not yet reached the specified accuracy
of 1 s RMS even with an interval between calibrations of
200 000 s (see Fig. 5).

lT—T 17
0.5
'(é“
g 0
0.5
[P A T N A
0 5 10 15 20

Days from 2 May 1998

Fig. 5. The time difference in seconds between the local
clock and UTC when the algorithm is configured to
realize an accuracy of 1 s RMS.

The highest accuracy with this configuration would
have been achieved with an interval between calibrations
of about 4 000s, since that would have resulted in 3
calibration cycles in a time equal to the time constant of
the frequency update loop. The performance shown in
this figure is about 50 times less expensive in terms of
network bandwidth and server load.

Conclusions

We have designed an algorithm for synchronizing the
clock of a computer using messages transmitted over the
Internet. The algorithm uses the network and message
formats of the Network Time Protocol [3], and can
communicate with conventional unmodified NTP servers.

The algorithm is based on our previous frequency
locked designs, but this version automatically adapts to
changes in the symmetry of the network delay. It also
automatically adjusts its operating parameters so as to
realize a specified level of performance. The adjustment
algorithm uses the ratio of the RMS performance to the
average cost as the metric for choosing the optimal
operating conditions.

249

In addition to synchronizing the local clock, the
algorithm has a number of other diagnostic modes — it can
be used to evaluate the Allan deviation of the freely-
running local clock or to estimate the jitter in the delay in
a local network. These evaluations use the same
machinery as the synchronization loop, except that the
local clock is not steered in these modes.

We have conducted two experiments to illustrate the
capabilities of the procedure. The first experiment was
designed to synchronize a clock as accurately as possible;
it achieved an accuracy of 30 ms RMS, and would be
capable of achieving an accuracy of better than 10 ms
RMS if its configuration were changed as described in the
text. This performance was realized using servers that
were more than 2000 km away, and neither the servers nor
the paths to them were conditioned in any way for this
work.

The second experiment was designed to synchronize
a clock so that it was correct to the nearest second — a
level which may be adequate for many users. The
maximum interval between calibrations was set to
200 000s, and the performance of the loop exceeded the
specified performance level even at the longest permitted
interval between calibrations.

Acknowledgements

This work is supported in part by the National
Science Foundation through grants NCR-9115055 and
NCR-9416663 to the University of Colorado. We
gratefully acknowledge this support.

References

1. Levine, Judah (1995), “An algorithm to synchronize
the time of a computer to universal time,” JEEE/ACM
Trans. Networking, Vol. 3. pp. 42-50.

2. Levine, Judah (1998), “Time synchronization using
the Internet,” /EEE Trans. Ultrasonics, Ferroelectrics
and Freq. Cntrl., vol. 45, pp. 450-460.

3. Mills, David L. (1992), “Network time protocol
(version 3); specification, implementation and
analysis: DARPA Network Working Group Rep. RFC-
1305, Newark, Delaware, Univ. Delaware.

4. Arvind, K. (1994), “Probabilistic clock
synchronization in distributed systems,” /EEE Trans.
Parallel Distrib. Syst., vol 5, pp. 474-487.

5. Cristian F. (1989), “A probabilistic approach to
distributed clock synchronization,” Distrib. Comput.,
vol. 3., pp. 146-158.

